Is Pollution Effect of Finite Difference Schemes Avoidable for Multi-Dimensional Helmholtz Equations with High Wave Numbers?
نویسندگان
چکیده
This paper presents an approach using the method of separation of variables applied to 2D Helmholtz equations in the Cartesian coordinate. The solution is then computed by a series solutions resulted from solving a sequence of 1D problems, in which the 1D solutions are computed using pollution free difference schemes. Moreover, non-polluted numerical integration formulae are constructed to handle the integration due to the forcing term in the inhomogeneous 1D problems. Consequently, the computed solution does not suffer the pollution effect. Another attractive feature of this approach is that a direct method can be effectively applied to solve the tridiagonal matrix resulted from numerical discretization of the 1D Helmholtz equation. The method has been tested to compute 2D Helmholtz solutions simulating electromagnetic scattering from an open large cavity and rectangular waveguide. AMS subject classifications: 65N06, 65N15, 65N22
منابع مشابه
Pollution-free Finite Difference Schemes for Non-homogeneous Helmholtz Equation
In this paper, we develop pollution-free finite difference schemes for solving the non-homogeneous Helmholtz equation in one dimension. A family of high-order algorithms is derived by applying the Taylor expansion and imposing the conditions that the resulting finite difference schemes satisfied the original equation and the boundary conditions to certain degrees. The most attractive features o...
متن کاملA case study of flood dynamic wave simulation in natural waterways using numerical solution of unsteady flows
Flood routing has many applications in engineering projects and helps designers in understanding the flood flow characteristics in river flows. Floods are taken unsteady flows that vary by time and location. Equations governing unsteady flows in waterways are continuity and momentum equations which in case of one-dimensional flow the Saint-Venant hypothesis is considered. Dynamic wave model as ...
متن کاملIs the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers?
The development of numerical methods for solving the Helmholtz equation, which behaves robustly with respect to the wave number, is a topic of vivid research. It was observed that the solution of the Galerkin finite element method (FEM) differs significantly from the best approximation with increasing wave number. Many attempts have been presented in the literature to eliminate this lack of rob...
متن کاملHigh Order Compact Finite Difference Schemes for Solving Bratu-Type Equations
In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...
متن کاملSolving a system of 2D Burgers' equations using Semi-Lagrangian finite difference schemes
In this paper, we aim to generalize semi-Lagrangian finite difference schemes for a system of two-dimensional (2D) Burgers' equations. Our scheme is not limited by the Courant-Friedrichs-Lewy (CFL) condition and therefore we can apply larger step size for the time variable. Proposed schemes can be implemented in parallel very well and in fact, it is a local one-dimensional (LOD) scheme which o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016